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Abstract. We report on the comprehensive numerical study of the fluctuation and correlation properties of
wave functions in three-dimensional mesoscopic diffusive conductors. Several large sets of nanoscale samples
with finite metallic conductance, modeled by an Anderson model with different strengths of diagonal
box disorder, have been generated in order to investigate both small and large deviations (as well as
the connection between them) of the distribution function of eigenstate amplitudes from the universal
prediction of random matrix theory. We find that small, weak localization-type, deviations contain both
diffusive contributions (determined by the bulk and boundary conditions dependent terms) and ballistic
ones which are generated by electron dynamics below the length scale set by the mean free path ¢. By
relating the extracted parameters of the functional form of nonperturbative deviations (“far tails”) to the
exactly calculated transport properties of mesoscopic conductors, we compare our findings based on the
full solution of the Schrédinger equation to different approximative analytical treatments. We find that
statistics in the far tail can be explained by the exp-log-cube asymptotics (convincingly refuting the log-
normal alternative), but with parameters whose dependence on £ is linear and, therefore, expected to be
dominated by ballistic effects. It is demonstrated that both small deviations and far tails depend explicitly
on the sample size—the remaining puzzle then is the evolution of the far tail parameters with the size of
the conductor since short-scale physics is supposedly insensitive to the sample boundaries.

PACS. 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and
nanoscale systems — 73.20.Fz Weak or Anderson localization — 73.23.-b Electronic transport in mesoscopic

systems — 05.45.Mt Quantum chaos; semiclassical methods

1 Introduction

Quantum coherence, its nonlocal features, and random-
ness of microscopic details can cause large fluctuations
of physical quantities in disordered mesoscopic systems.
The paradigmatic case is that of conductance fluctua-
tions which has given impetus for the whole field of meso-
scopic physics [1,2] by pointing out at unexpected features
of such fluctuations [3]. Contrary to the intuition devel-
oped from thermal fluctuations, and their self-averaging
properties in the statistical physics of macroscopic sys-
tems, the average value and variance are not enough
to characterize the broad distribution functions of vari-
ous mesoscopic quantities [4], even well into the metallic
regime ¢ > 1 (9 = G/G¢q being the dimensionless zero-
temperature conductance, in units of conductance quan-
tum Gg = 2¢?/h). The fluctuations increase, broadening
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the distributions, as disorder is increased eventually driv-
ing a system through the localization-delocalization (LD)
transition [5] at g ~ 1. Thus, the mesoscopic program was
born where full distribution functions of relevant quanti-
ties in open (e.g., conductance, local density of state, cur-
rent relaxation times, etc.) or closed (e.g., eigenfunction
amplitudes, polarizability, level curvatures, etc.) samples
are to be studied [1,6]. Especially interesting are the large
deviations of their asymptotic tails from the ubiquitous
Gaussian distributions (which can appear in mesoscopics
only in the limit g — o0).

Recently, the study of fluctuations and correlations of
eigenfunction amplitudes has been initiated [7]. The quan-
tum coherence induces long-range spatial correlations (due
to massless modes, like diffusons and cooperons) in the lo-
cal density of states and eigenfunction amplitudes, which
in turn lead to strong mesoscopic fluctuations of global
quantities like conductance. Small deviations of eigenstate
statistics from the universal predictions (applicable in the
limit ¢ — o) of random matrix theory (RMT) are well
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understood through perturbative corrections ~ O(g~1) of
the weak localization (WL) type [8], but the physical ori-
gin of large deviations in the far asymptotic tail of the
distribution function is much more controversial [9-11].
Not only that there are different analytical predictions for
the far tail asymptotics (which in fact do not explain all
details of the tails found in numerical simulations [12,13]),
but there is also an issue [11] of the relevant physics which
is responsible for large wave function amplitudes (quan-
tum ws. semiclassical) and a closely related question on
the limitations of usually employed field-theoretical ap-
proaches [14] to study the disordered electron problem.
Also, the parameters of the WL correction to the RMT
framework cannot be explained (e.g., in the Anderson
model [13]) solely by the standard universal (independent
of the details of disorder) quantities extracted from the
semiclassical diffusive dynamics [7]. Instead, careful ex-
amination of ballistic effects, generated by the properties
of particle dynamics on the length scale below the mean
free path ¢, is required [15]. Moreover, it is possible that
some types of disorder could generate appreciable higher
order terms (characterizing non-Gaussian features of ran-
dom potential [16]) in this perturbative expansion in 1/g,
and thereby change the functional form of the perturba-
tive correction as well. Thus, a detailed study of deviations
from the RMT statistics in the paradigmatic case of a
quantum particle in a random potential offers a possibility
to unravel underlying correlations in a controlled fashion,
which paves the way for understanding plethora of diverse
problems (including those outside of physics [17]) where
matrices containing random elements and their eigenstates
are encountered.

In the course of exploration of mesoscopic fluctuations,
the so-called prelocalized states have been unearthed as
the microscopic origin of asymptotic tails of various dis-
tribution functions of thermodynamic and kinetic quanti-
ties [10,18-20]. While typical wave function is spread uni-
formly throughout a metallic sample of volume L¢ with
average amplitude L~9/2 (up to inevitable Gaussian fluc-
tuations), the prelocalized state in 3D exhibits much larger
local amplitude splashes (on the top of the homogeneous
background |[¥(r)|?> ~ L~¢) at some points r within the
sample [7,13]. To obtain the far tail of such distribution
“experimentally” (e.g., in microwave cavities of Ref. [21]
or by numerical simulations [13]) in “realistic” metallic
systems, one has to search for extremely rare disorder con-
figurations where quantum interference effects are able to
generate highly unusual eigenfunctions.

What is the relevance of prelocalized states for trans-
port experiments? Most of phenomena in good metallic
disordered conductors are semiclassical in nature. This
means that disorder-averaged properties, like conductance
measured in experiments or calculated in (quantum trans-
port) theory [22], are determined by the usual extended
states of uniform amplitude, formed in the typical fluctu-
ations of the random potential. However, recent exper-
iments on quantum dots (nanofabricated samples with
well-resolved electron energy levels) show that some trans-
port properties, like fluctuations of the tunneling conduc-
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tance, can depend sensitively on the local features of wave
functions which couple the dot to external leads [23]. Also,
to understand the excitation and addition spectra of quan-
tum dots one has to deal with the statistics of Coulomb
interaction matrix elements, which are influenced by the
eigenfunction amplitude fluctuations [24]. By exploiting
the correspondence between the Schrodinger and Maxwell
equations in microwave cavities, it has become possible to
probe directly the microscopic structure of wave functions
in quantum disordered or quantum chaotic systems [21].

Here we undertake a comprehensive search, through
numerical simulations, for special disorder configurations
in order to investigate functional dependence of the pa-
rameters determining eigenstate statistics on the disorder
strength or sample size. This is not just a ‘brute force’
study culminating in a fitting procedure of the observed
distribution functions, but more importantly, an attempt
to quantify those effects which can lead to substantial de-
viations from the RMT, departing even from the standard
semiclassical corrections to it. Namely, our results stem
from the exact solutions of the Schrodinger equation for
a particle in a random potential, and therefore provide a
reference point for the analytical approaches which usu-
ally integrate out some degrees of freedom by focusing on
the “low energy” sector of a full theory [7]. For this pur-
pose, we also compute exactly the transport properties of
our finite-size samples, and relate them to the parame-
ters extracted from the fits of analytical formulas to the
perturbative and far tail intervals of the eigenfunction am-
plitudes. Mesoscopic physics intrinsically deals with finite-
size phase-coherent samples, and has led to efficient use
of different transport formalisms. Thus, we exploit the
fact that transport properties of a specific sample (sim-
ulated here as nanoscale single band conductors) can be
measured exactly on a computer. Although our focus is
primarily on the peculiar states exhibiting the largest
amplitudes (which generate far tails of the statistics of
eigenfunction amplitudes, as well as of other mesoscopic
quantities), it becomes necessary to investigate thoroughly
the region of small eigenfunction amplitudes because of
the possibility that the same semiclassical quantities (like
classical diffusion propagator [25], which we evaluate ex-
plicitly for the samples with specific boundary conditions)
might govern both portions of the distribution function [7].

We have investigated five different ensembles [26] of
mesoscopic samples, each containing 30 000 weakly disor-
dered three-dimensional (3D) metallic conductors. Finite-
size samples are modeled by a tight-binding Hamiltonian
(TBH)

H=> emm)(m|[+ > tma|m)(n, (1)
m (m.n)

with nearest-neighbor hopping ¢y = 1 (unit of energy)
between s-orbitals (r/m) = ¢(r — m) located on sites m
of a simple cubic lattice of size L = 12a to L = 20a
(a is the lattice spacing). Periodic boundary conditions
are chosen in all directions. The disorder is simulated by
taking potential energy ey, to be a uniformly distributed
random variable, —W/2 < &5, < W/2, which is the
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Fig. 1. Statistics of eigenfunction “intensities” |¥z(m)|* in
the band center E € (—0.15,0.15) of an Anderson model on
a simple cubic lattice 12°. Each curve is obtained by examin-
ing about two million exact eigenstates of the (time-reversal
and spin-rotation invariant) Hamiltonians whose on-site po-
tential is a random variable uniformly distributed over the
interval [-W/2, W/2]. The disorder strengths W for the five
different sets of 30000 Hamiltonians are chosen to ensure the
diffusive (L > ¢) and semiclassical (kpf > 1) transport regime
in the conductors they model (relevant transport quantities are
listed in Tab. 1.) The random matrix theory prediction for the
limit ¢ — oo is Porter-Thomas distribution, plotted here as a
reference.

standard (Anderson) model in the localization theory [5].
The impurity configurations vary from sample to sample
for a given disorder strength W € {3.5,4.0,4.5,5.0,5.5}
which is chosen to ensure that ensemble-averaged trans-
port quantities characterize metallic (g > 1) diffusive
(¢ <« L) transport regime at half filling (i.e., at Fermi
energy Fr = 0). For a weak kpf > 1 (kg is the Fermi
wave vector) disorder, disorder-averaged transport prop-
erties are semiclassical, i.e., well-described by the Bloch-
Boltzmann formalism. Going beyond W ~ 6 (but below
critical W, ~ 16.5 for the localization of the whole band)
would still give metallic conductance g > 1 (for large
enough lattice), but the semiclassical concepts appearing
in analytical predictions for the far tail [7], like ¢, loose
their meaning [22]. The disorder strengths below W = 3
are excluded only because of requiring too large lattices
to avoid quasiballistic transport.

Statistical properties of eigenstates in a closed sample
are described by a disorder-averaged distribution [10,25]
of eigenfunction “intensities” |&, (r)[?

1 2
£ =~ <Z Bt — W (1) PV)3(E - Ea>> @

on N discrete points r inside a sample of volume V. Here
p(E) = (3, 0(E—E,)) is the mean level density at energy
E, and (...) denotes disorder-averaging. Normalization of
eigenstates gives t = [dtt f(t) = 1. We evaluate this
function for eigenstates in the band center F = 0, which
are obtained by exact numerical diagonalization of the
Hamiltonian (1) [note that energy is a parameter in f(t)].
The distribution functions f(¢) for the five sets of conduc-
tors modeled on the lattice 123 is shown in Figure 1. The

229

10 :Q\IDO(‘
5 j} 100
10~ P 1
10° ? 1
82 0.1
107} % o
10-8 3 1
9 o
10°F 1
10-10 " " "
20 40 60 5 80 100
t="P|'V

Fig. 2. Comparison of the W = 5 eigenstate statistics f(t)
from Figure 1 for a lattice 12% and the statistics of band center
eigenstates generated in the ensembles of 2000 or 500 conduc-
tors modeled on larger lattices 16> (with ~ 150 eigenfunctions
picked in a small energy interval AE = 0.3 around £ = 0 in
each sample) or 20° (with ~ 300 eigenfunctions investigated in
each sample), respectively.

explicit dependence of f(t) on the sample size is demon-
strated in Figure 2 where W = 5 case is studied also on the
162 and 202 lattices. By searching through many configu-
rations of the random potential one can find the rare ones
which are responsible for the appearance of states with
the highest possible amplitude splashes. We smooth out
the data by additional averaging over a small energy in-
terval (which taken alone, or combined with only a small
number of disorder realizations, is not enough to study
the prelocalized states), without introducing any artifact
in the computed distribution functions [13]. This finally
brings the number of analyzed eigenstates to about 2 x 10°
for each curve plotted in Figure 1.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide a short survey of the main analytical
results for the eigenstate statistics in 3D, which are ex-
pected to be relevant for our observations. Then in Sec-
tion 3, a detailed comparison between these predictions,
for both small and large deviations of distribution func-
tions from RMT, and our results is undertaken using the
calculated transport properties of the samples. Finally, we
conclude in Section 4 by looking beyond the raw numbers
and pointing out at open questions.

2 Statistical approaches to nonintegrable
quantum systems

Quantum dynamics of a non-interacting particle in ran-
dom potential (e.g., generated by quenched impurities)
has a long history of being a standard playground for
the development of ideas of Anderson localization [5] and
mesoscopic physics [2]. The classical counterpart of this
problem is obviously chaotic, but it is only over the past
two decades that its connections [14,28] to generic clean
(i.e., without stochastic disorder) examples of quantum
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chaos [27] have been deepened. In both quantum chaotic
and quantum disordered systems eigenstates are charac-
terized solely by their energy, rather than by a set of
quantum numbers. Since eigenstates and eigenvalues can-
not be obtained analytically, it becomes useful to resort
to some statistical treatment where one studies correla-
tors averaged over large number of eigenstates instead
of focusing on the properties of a single quantum state.
Although the methods (and the language) of quantum
chaos and quantum disorder have evolved independently,
it was realized that Wigner-Dyson (WD) level statistics
of RMT [28], a fingerprint [29,30] of quantum chaotic
systems, is also applicable to disordered systems [14,31].
However, the lack of any transport-related energy or time
scale in RMT description of the delocalized phase sig-
nals that relevant time to traverse the sample diffusively,
tp = L?/D (D = vrl/3 being the bare classical diffusion
constant in 3D), is set to zero in this framework. There-
fore, it became clear that WD statistics can be applicable
to disordered system spectra only for the energy sepa-
ration scale much smaller than the Thouless energy [32]
Ern = h/t'D.

The physical origin of deviations from RMT in dis-
ordered systems with g < oo is the finite time tp re-
quired for the particle to spread ergodically all over the
sample, i.e., for the classical motion to explore the whole
phase space. The statistical approaches to quantum dis-
order problems, like supersymmetric nonlinear o-model
(NLSM) [14] which maps stochastic problem to a field
theory without randomness, provide the justification of
RMT in the ergodic (t > tp) regime of diffusive dy-
namics. Furthermore, these techniques make it possible
to study also the deviations from RMT for non-ergodic
times or energy scales in weakly disordered (kpf > 1)
conductors—both perturbative and nonperturbative cor-
rections are governed, within this framework, by the diffu-
sion operator describing the dynamics of a corresponding
classical system. The well-understood quantum chaotic
properties of disordered system have made these systems a
standard laboratory to test different approaches to generic
quantum chaos [30,33] (where well-defined averaging pro-
cedure over an ensemble is lacking [34]). Thus, limitations
of RMT encountered in disordered electron systems have
put the study of deviations from the universality regime
into the focus of both mesoscopic and quantum chaos
communities [7,15], where “lessons from disordered met-
als” [35] have greatly influenced the development of for-
malism for more arduous examples of quantum chaos.

Recently, the equivalent program has been pursued for
the eigenfunction statistics [7]. The earliest prediction for
the (universal) distribution of eigenfunction intensities, in
Gaussian orthogonal ensemble (GOE) of random matrices
(which are time-reversal and spin-rotation invariant),

fer(t) = exp(—t/2) (3)

1
V2t
is known as the Porther-Thomas [37] (PT) distribution.
Assuming only that eigenfunctions are normalized but
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otherwise arbitrary, fpr(t) can be derived [38] from the
probability that, e.g., component ¥; [which corresponds
to ¥(my) at some point my inside the sample] of an eigen-
state of a N x N random matrix is equal to some value ¢/N

O 17z
fer() = m S N -1
o) N N
x/ Taw:| ot — N 2ye (13 w2

R B A
= N TN = D3] (1 N) - @

in the limit N — oo (which corresponds to an infinitely
large lattice in our problem). This is essentially an exam-
ple of the central-limit theorem, and it should describe
completely the eigenstate statistics in the universality
limit that is insensitive to any physical details of the sys-
tem. Such limit in disordered electron systems requires in-
finite conductance g = Ery /A — oo since level spacing A
(thermodynamic scale) sets the smallest energy scale and
tp — 0 < Ery, — oo (in real systems Emy, is large only in
small enough samples, such as quantum dots). The uni-
versality stems from the basis invariance of RMT, i.e., the
fact that eigenfunctions in RMT are structureless with
¥, (r) and ¥, (r") being uncorrelated for |r — r’/| 2 ¢, and
fluctuating just as Gaussian random variables. However,
random Hamiltonians of real disordered solids are tied to a
real-space representation, where matrix elements are spa-
tially dependent and TBH (1) is a band diagonal matrix.
Therefore, they do not satisfy statistical assumptions of
the standard RMT ensembles since all elements of such
random matrices are non-zero and spatially independent.
Nevertheless, a rigorous connection to the RMT eigenstate
statistics (here just heuristically established through the
interpretation of Eq. (4)) is provided by Efetov’s super-
symmetric approach [10,14] (i.e., zero-dimensional limit
of the NLSM). While WD statistics works well for the part
of spectrum contained within the interval |F— F'| < FEy,
the distribution function f(¢) in finite g systems (like the
ones in Fig. 1) do not overlap with PT distribution in any
interval of eigenfunction amplitudes. The redistribution
of amplitude statistics, caused in part by the appearance
of highly unlikely according to RMT prelocalized states,
leads to three different regions of intensities ¢. The devia-
tions are the strongest in the large-t limit where f(t) can
be orders of magnitude greater than PT distribution. This
occurs also in quantum chaos [39] where localization due
to scars is generally less pronounced than inhomogeneities
of the prelocalized states in strong enough disorder [21].

Small deviations of f(¢) from the PT distribution are
accounted by a WL-type correction [8] (i.e., a quantity
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sensitive to the breaking of time-reversal symmetry; here
we use the expression for GOE)

k(3 t?

fen(®) = fex(®) |1+ 5 (3 -3t 5 ) + o) )

which is a regular function in the small parameter 1/g and
can be derived by a perturbative treatment of the nonzero
spatial modes of the NLSM. This result was obtained by
Fyodorov and Mirlin [8] (FM) for t < /2 (where cor-
rection is smaller than the RMT term). As in the case of
corrections to WD statistics, the deviations are parame-
terized by the properties of classical diffusive dynamics.
Namely, « is defined in terms of the diffusion propagator
(i.e., one-diffuson loop) [7]

exp(—Dq>7)
rr)= 71'22 Q22 )

which is the sum over the diffusion modes (diffusion propa-
gator IT(r,r’) is the Green function of the diffusion equa-
tion and can be expressed in terms of eigenvectors and
eigenvalues of the diffusion operator —Dq?, in a rectan-
gular geometry studied here). The sum in equation (6)
diverges linearly in 3D at large momenta, thus requiring
a cutoff at |g| ~ 1/¢ to retain the validity of the diffusive
approximation. We provide the ultraviolet regularization
using exponential damping factor [41] which limits the
sum to the diffusive regime Dq? < 1/7 (7 = £/vF is the
elastic mean free time)

sw=7 X

nwanyanz?éo

(6)

Rdiff =

exp[—4m2(n2 +n 4+ n2)y] .
n2 +n2 +n?

(7)

Here the wave vectors q are quantized by the periodic
boundary conditions used in all directions, ¢, = 27n, /L,
ng = £1,£2,..., and correspondingly for ¢, and ¢.. The
argument y is expressed in terms of the semiclassical trans-

port quantities
 Dr 1[N
Y= 3\L

The sum (7) can be evaluated exactly by a simple numer-
ical computation. On the other hand, its analytical de-
pendence on ¢/L is usually obtained after approximating
the discrete summation by an integral (a standard result
in the literature is therefore quoted [8] as S(y) ~ L/{).
To avoid loosing the terms of the original sum, which
depend on specific boundary conditions [41], it is nec-
essary to evaluate the original discrete form. Following
reference [41] this can be done by using the function

F(y) =Y .2 exp(—n*n?y),

9S(y)
dy

(8)

= —m*[2F (4y)]*. 9)

Since F'(y) is related to the complete elliptic integrals, for
small values of argument y < 1 they can be approximated
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by the leading order to give
1 1
Fly) =5 [(my)~* -1, (10)
which, upon integration in (9), leads to
3
W) = 4 2 x ) 322 i xy ap. (1)

NG

The integration constant ap can be fixed numerically by
finding the limit, as y — 0, of the difference between ex-
actly calculated discrete sum S(y) and its analytical ap-
proximation (11) with removed constant a.p. We find that
this difference converges at small y < 1074 to ap ~ 8.32.
For the largest ¢ in our study, the function (11) with this
ap reproduces the numerically calculated sum over the
diffusion modes to within 2%. Evaluation of S(y) in the
standard way, by approximating it with an integral, gives
only the leading term (which is the same for all boundary
conditions)

ﬁ
IV

where a7 is an integration constant defined by the infrared
cutoff at small wave vectors |g| ~ L.

The divergence of the sum over diffusion modes (7)
in 3D points out that more careful treatment is needed
of the short-scale physics. Since x has the meaning of
a time-integrated return probability for a diffusive par-
ticle [7], it can be generalized to the ballistic case (various
transport and thermodynamic phenomena encountered in
disordered conductors are related to the classical return
probabilities for a diffusive particle, see Ref. [45]). Using
ballistic generalization [42] of the NLSM to go beyond the
diffusive approximation, it was shown [7,15] that corre-
sponding ballistic contribution to this return probability,
i.e., the probability for a particle to be scattered only once
from an impurity and return back after a time ¢t < 7, has
to be added to kqig. Therefore, the total return proba-
bility is expected to be given by k = Kqif + Kbal. Such
(semiclassical) ballistic effects are non-universal, i.e., they
can depend strongly on the microscopic details of disorder
(they are negligible in the case of smooth potential hav-
ing a correlation length much bigger than 1/kp [7,43]). In
fact, it was shown recently [13] that £p,1 determining per-
turbative corrections in the Anderson model can be much
greater than kqgig. In Section 3 we show explicitly that
both contributions are needed to describe  as a function
of disorder strength, contrary to some previously reported
results [44] for the 3D Anderson model where fitted x was
related to ballistic effects only.

The second point of intersection of computed dis-
tribution function with PT distribution can be consid-
ered as the point at which a tail of f(t) starts to form.
While frum(t) still approximately describes the “near tail”
around these values of ¢, the slow decay of f(t) eventually
requires a nonperturbative formula in 1/g. Such is pro-
vided by the 3D case calculations [46] in the framework of

Si(y) = —ar, (12)
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standard diffusive NLSM, which give with an exponential
accuracy

(13)

1 .
P ln‘g(/it)} Lt R

farsm(t) ~ exp {

and stems from the appearance of the prelocalized states.
Since k ~ (kpf)~2 (only in the leading order—the dis-
crete sum in equation (7) also contains other terms), this
result written down to the leading order term of the cubic
polynomial in In[t/(krf)?],

—In fxLsm(t) ~ (kpt)? In® [ﬁ} 7

(14)
emphasizes that prefactor contains (kr¢)? dependence on
the disorder strength. However, the numerical constant is
uncertain [46] because of being determined by the ultravi-
olet g (in the field theoretical language), i.e., length scales
< ¢ which are outside of the diffusive NLSM framework.
Namely, the standard nonlinear o-models [14,18] are long-
wavelength effective field theories for the diffusive modes
whose saddle point is analyzed to get the eigenstate stat-
ics [10,19,46]. The role of energy is played by the diffusion
operator —DV?, so that fundamental variables of the the-
ory, Q(r) matrix fields, should vary spatially on the scale
much larger than ¢. However, it was found [10,46] that
in 3D systems Q(r) vary rapidly on the length scale ~ ¢,
which then impedes the prospect of getting rigorous re-
sults and points out to a different physics determining the
structure of eigenfunctions in 3D, than is the case if low-
dimensional systems [7,12]. An attempt to overcome this
limitations, by using ballistic NLSM which extends the
semiclassical description to all momenta |q| < kr, leads
to the same (k FE)2 prefactor dependence but offers 7/ 93
as the precise value of its constant piece [47].

In between the perturbative (¢ < £~'/2) and the far-
tail region (¢t > k') of the wave function amplitudes,
NLSM analysis of f(t) predicts an intermediate range of
amplitudes, described by [10]

k2 <t <k (15)
This has also has the form of the corrected PT distri-
bution, as is the case of FM distribution. However, the
correction term here is in the exponent, and therefore
of a different type than the one in frm(t). It should be
large compared to unity, but small compared to the lead-
ing RMT term [7].

An alternate route to account for the slow decay of f(¢)
at large amplitudes has been undertaken through a “direct
optimal fluctuation method” (DOF) of reference [11]. This
approach suggests possible importance of ballistic non-
semiclassical effects, which are missed in both diffusive
and ballistic NLSM formulation, by analyzing the short-
scale structure of solutions of the Schrodinger equation
(i.e., by analyzing the saddle point of the original problem
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of quantum particle in a random potential, rather than
the saddle point of its effective field theory obtained by
integrating out the disorder degrees of freedom). It gives
the following result for the far tail asymptotics (where only
the leading log-cube term of the full cubic polynomial of
Int is computed explicitly)

fpor(t) ~ exp [_CDOF kpt In? t} , (16)

assuming Gaussian white-noise random potential, and es-
timating Cpop ~ 3 x 1072 for that type of disorder. The
dependence on the prefactor on krf here is linear, which
can substantially increase the probability to observe a rare
event as compared to NLSM prediction. Nonetheless, this
result has also been interpreted heuristically within the
NLSM picture [7], assuming that & might depend solely
on the non-universal (semiclassical) ballistic ~ 1/kg{ con-
tributions of the same kind as those encountered in the
region of small eigenfunction amplitudes.

3 Fitting the eigenstate statistics: physics
behind deviations from random matrix theory

In this section, we first describe the details of the computa-
tion of f(t), and also give elementary account of the quan-
tum transport properties of conductors described by the
Anderson model. This should serve as an overture for the
subsequent detailed examination of the eigenstate statis-
tics in the perturbative region (i.e., the main body of the
distribution function of intensities), and nonperturbative
region (where amplitude splashes generate large deviation
from PT distribution), by attempting to fit the analyti-
cal forms introduced in Section 2. We then analyze the
confidence in such descriptions through relative error of
the corresponding fits. The extracted fitting parameters
are interpreted by comparing them to the expected ones
in the analytical predictions, with the help of transport
properties of our finite-size samples.

We solve exactly the eigenproblem of the TBH (1)
of a finite-size system inside a small energy window
AE = 0.3 positioned around F = 0. This interval picks
60-70 states in each of the 30000 conductors (modeled
on the lattice 123) with different impurity configurations.
The ensemble of disordered samples is characterized by
the disorder-averaged conductance g. The overall number
of collected states depends on disorder—as the disorder is
increased the energy band broadens, meaning that some
states start to appear with energy eigenvalues beyond the
band edge E, = 6t of the clean TBH while the average
number of states in the band center decreases. These states
are used to evaluate f(t) as a histogram of intensities at
all points inside the sample (N = 123). The two delta
functions in equation (2) are approximated by box func-
tions d(x). The width AE = 0.3 of 6(E) is such that p(E)
is constant inside AE. The amplitudes of wave functions
are sorted in the bins defined by §(t — |, (r)|?V), where
their width is constant on a logarithmic scale.

As emphasized in Section 1, before embarking on
the search for prelocalized states, we first compute the
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Table 1. Transport properties computed for our five ensembles
of impurity configurations characterized by different diagonal
disorder strength W in the Anderson model on a simple cubic
lattice 123.

g L(a) Kaim
W =35 215 2289 0.00074
W =40 174 221 0.0031
W =45 143 1.75 0.0084
W =50 119 1.42 0.018
W =55 100 1.17 0.035

transport properties of our samples. The exact zero-
temperature conductance of the nanoscale finite-size sam-
ple is obtained from the Landauer-type formula [48]

g="Tr [t(Ep)t(Er)], (17)
where transmission matrix t(Er) is expressed in terms
of the real-space Green functions [49] for the sample at-
tached to two disorder-free semi-infinite leads. The de-
tails of such calculations for the lattice model studied
here are given elsewhere [22]. Here we just clarify the re-
lationship of this conductance to the Thouless conduc-
tance gy, = 2w E1, /A (expressed in terms of the spectral
properties of a closed sample), which appears in standard
analytical treatments of various disordered problems, in-
cluding the eigenstate statistics [7]. This mesoscopic com-
putational technique opens the sample to the surround-
ing ideally conducting medium, so that particles can leave
and enter through the lead-sample interface. Thus, the
discrete levels of an initially isolated sample are smeared,
and spectrum of sample+leads=infinite system becomes
continuous (which allows us to find the conductance at
any Ep inside the band). However, the computed conduc-
tance, for not too small disorder [50,51] or coupling to the
leads of the same transverse width as the sample [50], is
practically equal to the “intrinsic” conductance gry. In
practice this means that we attach sample to the leads
of the same cross section and use the same hopping ma-
trix element ¢y, throughout the system (i.e., in the leads,
lead-sample coupling and in the sample), in order to min-
imize any influence which leads can have on the conduc-
tance [51].

The disorder-averaged transport quantities, character-
izing the five ensembles of conductors studied here, are
listed in Table 1. For weak disorder W < 6 conduc-
tance ¢ is dominated by the semiclassical effects [22].
Thus, we use the Bloch-Boltzmann formalism (applicable
when ¢ > a [22]), in Born approximation for the scatter-
ing on a single impurity, to get the elastic mean free path
{(Ep = 0) ~ 35.4/W? shown in Table 1. Analytical treat-
ments usually assume a simple spherical Fermi surface for
which kg is just the radius of the sphere. Such quantity
is not well-defined for a lattice system with non-spherical
Fermi surface where kg is direction dependent (i.e., differ-
ent average values can be obtained depending on whether
one averages the absolute value of kr or the root-mean-
square of kr over the Fermi surface). Nevertheless, all dif-
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Fig. 3. Weak localization correction /2[3/2 — 3t + t2/2],
through which frm(t) accounts for the small deviations from
the Porter-Thomas distribution fpr(t), fitted (dashed lines)
to f(t)/fepr — 1 in the perturbative region of amplitudes for
statistics from Figure 1. The first zero of all curves is W de-
pendent and falls in the interval (0.46,0.51); the second one is
at =~ 0.53. This should be compared to the two zeros t{, = 0.55
and t§ = 5.45 of 3/2 — 3t + t*/2. This fit is expected to be
valid from ¢t < 1/y/k to t = 0—we find the relative error
[f(#)— fem(t)]/£(t) to be less than 1% all the way to t ~ 107!
(up to some noise in the data at the smallest investigated t).

ferent averaging procedures give similar values, and we
use conventionally the one which would reproduce some
transport formula, like Sharvin [52] classical point contact
conductance G = Gg k% L? /4w, where such average values
(here over the Fermi surface Er = 0 of a simple cubic lat-
tice) naturally appear. This convention gives kr ~ 2.8/a,
which should serve as a counterpart of kr appearing in
theoretical simplifications assuming Fermi sphere. It is
easy to check that these values of parameters, plugged
into the Drude-Boltzmann formula g ~ (k2 L?/47) (¢/L),
approximately reproduce the disorder-averaged Landauer
two-probe conductances from Table 1.

3.1 Perturbative deviations from the RMT limit

We commence the comparison between our results in Fig-
ure 1 and functional forms from Section 2 by fitting
FM distribution (5) to the data in the region of ampli-
tudes where f(t) deviates only slightly from PT distribu-
tion. The plot of f(¢)/fpr(t) —1 (Fig. 3) offers a straight-
forward way to check for the non-trivial feature of the
correction term, such as whether the zeros t;, = 0.55 and
ty = 5.45 of 3/2 — 3t +t2/2 are exhibited by our data. We
find that zeroes of the curves from our numerical simula-
tion are slightly smaller (Fig. 3), the first one being even
disorder strength dependent. Since naive (visual) inspec-
tion of fits, especially on a logarithmic scale might lead to
erroneous conclusions (like the range of amplitudes where
some function fits the data), we establish a quantitative
criterion of the quality of a fit with some formula fg(t)
by looking at the relative error [f(t) — fat(¢)]/f(t). This
becomes especially important in assessing the fit of the
far tail on the semilogarithmic scale (an example of such
assessment is shown in Fig. 7). Moreover, this type of plot
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Fig. 4. The extracted s from the fits of FM distribution
(Fig. 3) to the portion of our numerical distribution f(t)
contained within the interval of ¢ where deviations from the
Porter-Thomas distribution of RMT are small. The depen-
dence of these values on the disorder strength (i.e., mean free
path £) is explained as a sum of the diffusive contribution
~ 1/(krf)?® (or, more precisely, kair expressed through the
full sum (11), as shown in the upper panel) and the ballistic
contribution ~ 1/kgf.

directly highlights intervals where some analytical formula
can be considered to describe the data. For example, this
gives a quantitative insight into the boundaries of per-
turbative, intermediate and nonperturbative regions dis-
cussed in Section 2. The FM distribution describes f(¢) for
small eigenfunction amplitudes completely in the weakly
disordered samples, where [f(t) — fem(t)]/f(t) is less than
1% for the data and the fit in Figure 3. It also fits the
statistics in the conductors where dirty metal regime of
transport is reached in the Anderson model (e.g., the re-
sistivity of W = 5.5 sample would be ~ 500 uf2cm for
lattice spacing a = 3 A). However, it is demonstrated by
Figure 3 that increasing W toward the boundary W ~ 6
leads to larger relative difference between the fitted FM
distribution function and the numerical data, while also
shrinking the interval of ¢ where such comparison is still
reasonable in the first place. For W 2> 6 unwarranted
application of the Drude-Boltzmann formula would give
¢ < a (i.e., the transport in this regime is dominated by
non-semiclassical and nonperturbative effects [22]). There-
fore, even though it might be possible to claim that FM
form accounts for some portion of f(t) at stronger disor-
der [44], the direct comparison of extracted parameter
to the calculated one becomes nonsensical. For example,
W cannot be interpreted as ~ £~1/2 in this regime. In fact,
the departure of FM correction from our f(t) starts before
the upper limit of disorder, determining the breakdown
of Bloch-Boltzmann theory of semiclassical transport, is
reached. Similar distinction between the disorder limita-
tion for the diagrammatic results and somewhat higher
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limit for the validity of Boltzmann equation is seen in
some other cases [53] (despite the fact that Boltzmann
theory is rigorously justified as a lowest order result of a
perturbative expansion of e.g., the Kubo formula).

The one-parameter fit of the FM result equation (5)
allows us to extract the first relevant physical parameter
from our data, k. The extracted values are presented in
Figure 4. These values of k£ do not match to the calcu-
lated kaig (Tab. 1) determined by the universal proper-
ties of the diffusive dynamics. This is not surprising in the
light of the discussion in Section 2. What might be sur-
prising is that disorder-specific Kpa1 = k — Kqig can be few
times greater than kq;g. This points out to the importance
of the short-scale effects even in the perturbative region.
Nevertheless, it appears that non-Gaussian features (non-
zero higher order cumulants) of the uniformly distributed
random potential of the Anderson model do not generate
interesting terms beyond the second-order ones computed
explicitly in the FM correction.

For a system of fixed size, Figure 4 shows that
Kk changes with the strength of disorder in a way ex-
pected for the change of a sum of the two contribu-
tions. The first term in the phenomenological formula for
k = 0.66(kpl)~2 + 0.22(kpl)~! is different from the ana-
lytically computed kqi. However, the function fitting the
data on the lower panel of Figure 4 is only the leading
order behavior (usually given when boundary conditions
quantizing the diffusion modes are neglected [41]) of the
full kqig computed in Section 2. Therefore, we proceed to
fit formula (6) in the following form

_Ki25W) | Ka.
N V]

That such fit of k vs. y = 1/3(¢/L)? is successful is shown
on the upper panel of Figure 4, and also by comparing
K1/\/y = 0.012L /¢ factor in the first term to the expected
1/g = (47 /k%L?)(L/f) = 0.011. The remarkably close nu-
merical values confirm suggest that xqig + O.23(k:pé)’1
should include the lower order boundary condition de-
pendent terms [41] in kqig. While it would be hard to
investigate this extra terms from the scaling of numer-
ically computed disorder-averaged conductance (because
of “pollution” by the conductance fluctuations), here they
parameterize the features of mesoscopic fluctuations them-
selves.

The other important question concerns with the de-
pendence of the two contributions on the sample size.
Standard display of kqif and kpa in the literature shows
only the leading order terms of such parameters, like equa-
tion (14) or equation (16), which are L-independent [7,11].
The short-scale contributions to x are not sensitive to the
sample boundaries, so that change of the fitted & in fry(t)
with L should be generated solely by a change of kai(L).
Our evaluation of kgif introduces several size dependent
terms, cumulative effect of which is shown in the up-
per panel of Figure 5. In the limit of large system size,
this converges asymptotically to limp_, o kaig(L) = 0.11.
This offers a simple test of the accuracy of the regular-
ization scheme employed to obtain kgig(L). In order to

(18)
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Fig. 5. The region of small deviations of f(t) from the RMT
statistics fpr(t) in the three sets of W = 5 disordered con-
ductors (lower panel), which differ by the lattice size: 123, 16%
and 20° (Fig. 2). Fitting WL correction x/2[3/2 — 3t +t>/2] to
these curves gives k as a function of L, as shown in the inset of
the upper panel. This should be compared to size-dependence
of its diffusive contribution kaif in equation (6), since ballistic
contributions are size independent.

investigate this issue, we generate a set of conductors
modeled on the lattices 163 and 203 with W = 5 disor-
der strength. The comparison between the corresponding
distributions f(t) is shown in Figure 2; using the same
energy window AFE = 0.3, this distributions are gener-
ated from about ~ 150 or ~ 300 states, for each real-
ization of disorder, which are picked in the band center
of 16 or 202 lattice, respectively. Even without too large
statistics, a palpable deviation between the two distribu-
tions is observed in the far tail, and also in the region of
small ¢. In quantitative terms, analytical expression (6)
gives kaig(L = 12) = 0.019, kaig(L = 16) = 0.028, and
kait(L = 20) = 0.036, while the fitted ones are x(L =
12) = 0.089, x(L = 16) = 0.096 and (L = 20) = 0.100.
At lower disorder W = 3.5 we get somewhat better agree-
ment between fitted and calculated change in x with the
system size: k(L = 20) — k(L = 16) = 0.0036 wversus
kaig(L = 20) — kaig(L = 16) = 0.0027, in accord with
the discussion above on the disorder strength boundaries
for the validity of perturbation theory in 1/kg.

3.2 Far tail

A common feature of (almost) all analytical results for the
eigenstate statistics in 3D metallic samples is that some
exp-log-cube formula is predicted to describe the large-t
asymptotic behavior of f(t). Thus, the most general func-
tional form along these lines would be an exponent of a
cubic polynomial of Int¢. Since lower order terms in the
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Fig. 6. Exp-log-cube fits, equations (19) and (20), versus at-
tempted log-normal fit to the far tail of f(¢) for W = 5 ensem-
ble of disordered conductors from Figure 1. The numerical data
for our three-dimensional systems clearly favor exp-log-cube
asymptotics. Relative error of the fits is plotted in Figure 7.

polynomial are rarely calculated, and fitting of any for-
mula is more reliable when the number of free parameters
is small, we choose to fit two different simple (employing
only two parameters) exp-log-cube expressions (postpon-
ing the physical interpretation of their parameters for a
moment):

fir(t) = Cpexp(—CsIn 1), (19)
which is always the leading order term (and sometimes

the only one amenable to explicit computation, like in
Eq. (16)), and the NLSM-like result (13)

fa(t) = Cpexp |- In®(kpLct)| - (20)

4kgLC

Using the fitted x from Figure 4, we first establish the
boundaries of different intervals for f(¢) which are dis-
cussed in Section 2 (e.g., according to equation (13) the
beginning of the far tails is approximately located at
t 2 1/k). These serves as a consistent criterion, where
portion of f(t) to be fitted with exp-log-cube formula an-
alytical enlarges with increasing W, thus avoiding spuri-
ous results when attempting to fit too large piece of the
distribution function. Although log-normal asymptotics is
expected in 2D systems [7,11] (and has been confirmed
numerically [12]) it has also appeared as a candidate in
3D systems [10]. However, attempt to fit C}) exp(—C2 In®t)
to our data fails completely, as shown in Figures 6 and 7.

To check quantitatively the level at which fitted exp-
log-cube formulas match f(t) from the numerical simula-
tion, we perform our stringent test by plotting the relative
error in Figure 7. The possibility to fit both functions (13)
and (20) in a more or less similar way is shown in Figures 6
and 7. Thus, a portion of f(¢) can be well-described by the
exp-log-cube asymptotics, where the size of the interval of
amplitudes where the relative error is small (because of the
noise in the data points of f(¢) being pushed to the largest
values of t) increases with increasing disorder strength.
Another conclusion which can be drawn from Figure 7
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the exp-log-cube formula (as well as the illustration of in-
adequacy of the “log-normal fit” from Figure 6, thin solid
line) to the exact f(t) from Figure 1: thick solid line is for
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C;, exp[—1/4kELC In®(keLct)].

50 60

is that a narrow intermediate region of amplitudes exists
which is not covered by either the FM function or exp-
log-cube asymptotics. However, it appears that it cannot
be fitted at all by the intermediate formula (15), which is
too akin to the PT distribution for this to work here.

We now proceed by analyzing dependence of the ex-
tracted parameters on the disorder strength kg¢, as well
as by looking at the consequence of interpreting Kgrc
to have the same physical meaning as k obtained by fit-
ting the FM formula to the perturbative region (Fig. 3).
This interpretation is in the spirit of NLSM conclusions
where both perturbative and nonperturbative corrections
to RMT eigenlevel or eigenstate statistics are governed by
the same semiclassical physics [7]. However, their values
turn out to be quite different along the respective por-
tions of f(t). The most important finding in the far tail is
that both prefactors Cs and 1/4kgpc appear to increase
linearly with krf, as shown in Figure 8. Since prefactors
are the most conspicuous signature of the importance of
underlying ballistic or diffusive effects, this would mean
that ballistic effects completely dominate in the far tail
(explaining e.g., why we find kgrLc > & > Kaigg) and con-
firming the conclusions of DOF analysis [11] where short-
scale structure of the solutions of Schrodinger equation is
pointed out to be solely responsible for the rare events
at the largest possible intensities t. Nevertheless, a puz-
zle remains: both prefactors depend on the sample size
(which is not treated explicitly in the present analytical
schemes [7,11]), whereas it is plausible that ballistic effects
are insensitive to L. For example, at W = 5 we have to use
C3 = 0.218 or kgrc = 1.411 (compare with corresponding
values in Fig. 8) to fit the far tail of f(¢) in Figure 2 for
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Fig. 8. Parameters of the two different exp-log-cube formulas
(see Egs. (19, 20)), fitted to the far tail of f(¢) in Figure 1, as
a function of disorder strength (measured by £). The success
of the linear fitting of both C5 and 1/4kgrc vs. krf favors an-
alytical predictions having first power of kr{ as the prefactor
of the leading log-cube order, thereby supporting DOF conclu-
sions [11] which emphasize that short-scale effects govern the
far tail in 3D systems.

the sample of size L = 20a. This suggests that a theory
is needed where such size-dependent effects are handled
explicitly (their magnitude cannot be explained by, e.g.,
the change in kqig (L) as is approximately possible for the
size dependence of parameters in the small-t region).

4 Conclusions

Our results confirm that statistical distribution of eigen-
function amplitudes in 3D mesoscopic disordered sys-
tems depends crucially on short-scale ballistic effects (and
thereby on the details of a random potential). In fact,
the exactly computed universal quantities characteriz-
ing the classical diffusion process generate much smaller
contribution to the parameters needed to describe the
observed distributions by the analytically predicted for-
mulas. This is revealed in the perturbative region of am-
plitudes, where deviations of the eigenfunction amplitudes
distribution function from the RMT limit are small, and
Fyodorov-Mirlin distribution (i.e., Porter-Thomas distri-
bution corrected by the weak localization terms) captures
their functional form for weak enough disorder (i.e., the
upper limit of disorder strength should be smaller than
the one determining the breakdown of other semiclassical
properties, like Drude-Boltzmann conductance) in the An-
derson model of localization. In this interval of small eigen-
function amplitudes, the diffusive contribution contains
boundary conditions dependent weak localization terms,
which stem from evaluation of the discrete sum over the
diffusion modes. In the region of large wave function am-
plitudes, deviation from the RMT appears in the form
of far tail of the distributions function, and is governed
by the prelocalized states formed in rare configurations
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of the random potential. The far tail, which we obtain
after examining about 2 x 105 exact eigenstates, cannot
be accounted by the log-normal distribution, but is well-
described by the exp-log-cube formulas. However, sub-
stantially different parameters, used in NLSM formalism
with clear physical interpretation, are needed for this when
compared to the ones governing the small deviations. Nev-
ertheless, their linear dependence on the disorder strength
(measured by kgf) is in accord with prefactor of the
DOF theory, where short-scale effects were pointed for the
first time as the possible sole explanation of the far tail
statistics (we cannot decipher whether these effects are of
semiclassical or genuine quantum origin). These findings
appear to be quite different from the success of various
semiclassically based theories [54] in describing the spec-
tral statistics in mesoscopic systems, which are dominated
by the general properties of quantum coherent superposi-
tions and diffusion. The problems with standard diffusive
semiclassical description appear in the study of statistics
of any quantity where corrections to RMT are expressed
in terms of the sums which diverge above some specific
space dimensionality [20] (such as d > 2 in the eigenstate
statistics problem). Our analysis points out that regular-
ization schemes, which ad hoc avoid divergences from the
short-length scales below ¢ by introducing a cutoff at large
momenta |q| ~ 1/¢, can lead to large discrepancies when
compared to exact numerical results.

The feature of the far tails in the Anderson model
which does not fit into the picture of ballistic effects alone
is the need for specific prefactors terms which can account
for the observed size dependence of the statistics. One pos-
sible explanation for these discrepancies would be the lat-
tice effects in our model, but real solids are lattice struc-
tures (here simplified by taking single orbital per site)
and possibility of such effects would not be an artifact
of the model (which has been a paradigmatic model of
the localization theory since the seminal paper of Ander-
son [5]). The other possibility stems from the fact that,
even though our samples are good metals with g > 10,
they are not large enough to be in the vicinity g > 1 of
universality limit, which is the region treated by present
theories. Strictly speaking, our findings can be consid-
ered as a demonstration of the structure of eigenfunctions
in nanoscale conductors, and to contrast their structure
to the predicted one in the limit g > 1, a heuristic at-
tempt to account for the small-size corrections might be
useful. Thus, if we interpret t = |¥(r)|?V of the stan-
dard statistical analysis as the ratio of eigenfunction in-
tensity to its typical value 1/V far away from the high
amplitude splashes, then by the same token, in small
samples we can construct statistics of analogous quan-
tity ¢/ = [&(r)|?/|¥(r)[3,,, where eigenfunction intensity
is normalized by the its typical value ¥ (r)|?,,. The auspi-
cious outcome of this procedure would be vanishing of the
size dependence of the far tail statistics. It turns out that,
for the same W = 5 examples (on 122 and 20? cubic lat-
tices) shown in Figure 2, [#(r)[3,,V ~ 0.26 fluctuates only
slightly from eigenstate-to-eigenstate or from sample-to-
sample. This allows us to define the PT distribution of ¢/,
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Fig. 9. Distribution function f(¢') of the eigenfunction inten-
sities t' = |¥(r)[>/|¥(r) |3, (normalized by the typical value of
intensity |¥(r)|3, of a given eigenstate) in the Anderson mod-
eled nanoscale conductors with W = 5 disorder strength on
V =122 and V = 20° lattices. This analysis is complementary
to that shown in Figure 2 for f(t) where t = [¥(r)|?/V ! The
inset plots correction [analogous to the one in Figure 3 for f(t)]
to the PT distribution fpr(t') in the region of ¢ where such
deviations are small.

fer(t') = 2rt'VIw(r)|3,,] 712 exp(—t'V|¥(r)[Z,,/2). The
correction term f(¢')/fpr(t') — 1 in the region of small
deviations from RMT now displays almost negligible size
dependence (see inset in Fig. 9). Nevertheless, Figure 9
shows that size dependence of the far tail of f(¢') per-
sists, albeit with a smaller relative difference |fr—12(¢') —
fr=20(t")|/ fr=12(t") than in the case of usual analysis deal-
ing with f(t) in Figure 2.

It remains to be seen if present approaches can
combine short-scale effects with those responsible for
the size dependence. Namely, ballistic extension of the
o-model [15,42], which attempts to overcome the short-
comings of the diffusion approximation and assumption of
slow spatial variation of the NLSM fields, provides a pre-
cise numerical coefficient of the log-cube prefactor while
leaving its dependence on disorder strength unchanged
from (krf)? in the diffusive NLSM formalism—this con-
tradicts our findings. On the other hand, DOF technique
as formulated in reference [11] is not directly applica-
ble to the conductors modeled by the standard Anderson
Hamiltonian [11]. Thus, the structure of eigenfunctions
of the Schrodinger equation for a particle in a random
potential (which is the basic, tantalizingly simply formu-
lated one-particle quantum-mechanical problem) remains
a problem to be elucidated further.
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